6 Multiple comparison correction
In whole-brain analysis
Reminder: group analysis
Family-wise error rate
Image credit: unknown
If the data is not smoothed, equivalent to bonferroni
Other correction types
Cluster threshold
False discovery rate
Cluster-level inference
Uncorrected
# interactive plot (you can browse the activations)
from nilearn import plotting
# Use subject's anatomy as background
= '/home/jovyan/gambling/bids/derivatives/fmriprep/sub-001/ses-1/anat/sub-001_ses-1_acq-mprage_desc-preproc_T1w.nii.gz'
bg_img =1.96, vmax=10,
plotting.view_img(zmap, threshold=bg_img,
bg_img=[0, 0, 0],
cut_coords=600,
width_view=contrast_string) title
Cluster-thresholded
from nilearn.glm import threshold_stats_img
= threshold_stats_img(
thresholded_map1, threshold1
zmap,=0.05,
alpha="fpr",
height_control= 100,
cluster_threshold =True,
two_sided
)
# Use subject's anatomy as background
= '/home/jovyan/gambling/bids/derivatives/fmriprep/sub-001/ses-1/anat/sub-001_ses-1_acq-mprage_desc-preproc_T1w.nii.gz'
bg_img =threshold1, vmax=10,
plotting.view_img(thresholded_map1, threshold=bg_img,
bg_img=[0, 0, 0],
cut_coords=600,
width_view=contrast_string) title
FDR-thresholded
from nilearn.glm import threshold_stats_img
= threshold_stats_img(
thresholded_map1, threshold1
zmap,=0.05,
alpha="fdr",
height_control=True,
two_sided
)
# Use subject's anatomy as background
= '/home/jovyan/gambling/bids/derivatives/fmriprep/sub-001/ses-1/anat/sub-001_ses-1_acq-mprage_desc-preproc_T1w.nii.gz'
bg_img =threshold1, vmax=10,
plotting.view_img(thresholded_map1, threshold=bg_img,
bg_img=[0, 0, 0],
cut_coords=600,
width_view=contrast_string) title
FWE-thresholded
from nilearn.glm import threshold_stats_img
= threshold_stats_img(
thresholded_map1, threshold1
zmap,=0.05,
alpha="bonferroni",
height_control=True,
two_sided
)
# Use subject's anatomy as background
= '/home/jovyan/gambling/bids/derivatives/fmriprep/sub-001/ses-1/anat/sub-001_ses-1_acq-mprage_desc-preproc_T1w.nii.gz'
bg_img =threshold1, vmax=10,
plotting.view_img(thresholded_map1, threshold=bg_img,
bg_img=[0, 0, 0],
cut_coords=600,
width_view=contrast_string) title
Non-parametric inference
Permutation-based inference
For the multiple comparison case, we use the same logic, but instead of single voxel we consider the maximum of each statistical map.
References
Nichols, Thomas E., and Andrew P. Holmes. 2001. “Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples.” Human Brain Mapping 15 (1): 1–25. https://doi.org/10.1002/hbm.1058.